
231 rue Saint Honoré - 75001 Paris - France

Follow us

CobolCloud Embedded

SQL Pre-compiler

Product Brief

Overview

CobolCloud Embedded SQL Pre-compiler (CLDSQL) has been conceived to allow enterprises

to preserve their mission-critical COBOL ESQL applications by pre-compiling them without source code modifications

and by reproducing the runtime behaviors on which they rely. Architected as a multi-dimensional API,

CLDSQL provides the ability to easily swap components in and out and provide access to any data source.

Reusable rules and tasks can be directly applied to the programs during the preparation phase

without modifying the original COBOL SQL code. Among others, CLDSQL supports PostgreSQL,

Oracle, MySQL, and ODBC and is easily extensible to use with other databases.

CLDSQL has two basic modules

CLDSQL comprises two basic modules:

• An intelligent preprocessor that converts the original

COBOL ESQL code, analyzes it, and generates code to

be used by the CobolCloud compiler. In the pre-proces-

sing phase, there is an analysis phase and a translation

phase, each of which can be adapted to exploit the

capabilities of the database in use most efficiently.

• A series of runtime libraries and tools that interface with

the DBMS used by the client. The CLDSQL runtime compo-

nent allows it to support the most widely used Open Source

and proprietary database solutions, while also being easily

extensible to newly emerging database solutions.

Both modules are highly modular

multi-directional APIs

CLDSQL is modular both during the preparation phase

(parsing and generation of ESQL statements) and at

runtime. The translator module in CLDSQL can apply

transformation rules to rewrite statements (loops, cur-

sor usage, etc.) with the aim of keeping performance

intact when migrating from the mainframe environment

to open systems.

The preprocessor in CLDSQL can point out features and

potential “problem areas” in the code that might need

particular attention when porting an application from

the mainframe to open systems.

CLDSQL can handle natively a plurality of databases at

runtime, also simultaneously. Due to its modular nature,

database support can be easily augmented or even re-

placed with custom-tailored modules, to better accom-

modate features used by the client’s application.

231 rue Saint Honoré - 75001 Paris - France

Follow us

CLDSQL allows you to control its behaviors

CLDSQL provides a wide-ranging set of parameters that

can be used to control its behavior during both the gene-

ration and the runtime phase.

You can decide how character fields should be treated,

for instance, or how SQL statement parameters should be

generated. You can specify all the connection options sup-

ported by the DBMS of your choice. Decide to use the na-

tive cursor library provided by your DBMS or the emulated

one in CLDSQL. There are also options to control the CO-

BOL syntax that will be used, or how the runtime libraries

should be called.

Or you can simply use the defaults

implemented in CLDSQL

if they suit your process.

You can choose to take control, or not!

The CLDSQL transformation engine reduces

the need to change your code

Migrating from a mainframe environment to open systems

does not just mean “bringing it over” or “making it run”.

Radically different architectures also imply completely

different assumptions about CPU and I/O speed, memory

layout, etc. Subtle differences in how an SQL statement

is interpreted and executed by each DBMS, can slow

a perfectly-written program down to a crawl, or make

it consume a huge quantity of resources. By using a

CLDSQL transformation rule, it becomes possible to se-

lectively target particular statements or situations within

a program and adjust the software’s behavior to meet

specific requirements. All avoiding the need for direct

code modifications and minimizing the risk of regres-

sions or undesired changes in functionality.

The transformation engine integrated in CLDSQL ex-

poses SQL statements, cursors and variable definitions

in your code as objects that can be manipulated with

the included interpreter. You do not need to modify the

COBOL SQL code directly; reusable rules or tasks can

be directly applied to your programs during the prepa-

ration phase without modifying the original COBOL SQL

code. Queries can be manipulated and enriched: you

can do things like add or remove columns, modify the

function names used by a statement to make them com-

patible with your DBMS of choice, and much more!

Every software has its own needs in terms of perfor-

mance, portability, and customization: CLDSQL comes

with a predefined set of transformation rules, but new

ones can be written to support a given migration project

or even for a specific program.

Since you do not need to modify your original code, you

can easily test the best strategy for your ESQL:

- Run your original code promptly and easily, then fine-

tune your application for maximum performance.

- Or incorporate custom-made rules and tasks into your

workflow to get maximum performance and reliability

from the start.

231 rue Saint Honoré - 75001 Paris - France

Follow us

Quality and security

CLDSQL supports SSL/TLS connections to PostgreSQL or

other DBMSs of choice, using the DBMS-provided mecha-

nisms (including authentication and authorization) for maxi-

mum security and reliability.

Every release of CLDSQL passes a thorough testing phase

that checks for problems and vulnerabilities and is digitally

signed for proper verification.

Integration

CLDSQL can use information generated by other tools of

the CobolCloud suite (profiler and compiler) to analyze the

code and generate the best possible data access strategy

for each scenario.

The “preparation” components of CLDSQL (parser and trans-

formation libraries) can output a wealth of information about

the programs that goes well behind a standard COBOL

listing, ready to be automatically processed by other tools

(other preprocessors, debuggers, profilers, etc.) or used to

integrate COBOL programs with other business processes.

Extensible logging system

CLDSQL uses an advanced logging system that can be

tailored and extended to support multiple logging targets

and filters. When needed, whether for debugging purpo-

ses, or simply to “keep tabs” on the application, custom

logging modules can be written and added to the CLDSQL

runtime logging system.

Cross-platform

CLDSQL is natively available on Windows and Linux.

Conformance tests are separately executed – before each

release - in each environment to ensure a consistent and

flawless experience.

COBOL

SQL

Make your COBOL applications shine

in the Cloud

Thanks to its extensible and pluggable architecture,

CLDSQL enables application to easily connect with da-

tabases residing in a shared or private cloud environment.

Its low disk and memory footprint, together with its low

overhead and its fast startup and connection time, make

it ideal for containerized applications. CLDSQL supports

the major databases on standard cloud architectures,

including enhanced connection and service modes.

231 rue Saint Honoré - 75001 Paris - France

Follow us

Features Benefits

• CLDSQL supports PostgreSQL, ODBC, MySQL, Oracle, SQLite

databases, and is easily extensible to use other databases

• The runtime mechanism provides access to the most widely used

DBMS solutions, and is easily extensible: more DB engines can be

added by writing a small runtime library

• CLDSQL has two basic modules

• CLDSQL comprises two basic modules:

 • a preprocessor that converts the original COBOL ESQL

code, analyzes it and generates code to be used by the

CobolCloud compiler

 • a series of runtime libraries and tools that interface with

the DBMS used by the client

• CLDSQL is a highly modular, multi-directional API

• CLDSQL is modular both during the preparation phase (parsing

and generation of ESQL statements) and at runtime. The translator

module in CLDSQL can apply transformation rules to rewrite

statements (loops, cursor usage, etc.) with the aim of keeping

performance intact when migrating from the mainframe environment

to open systems

• The preprocessor in CLDSQL can point out features and potential

“problem areas” in the code that might need particular attention

• Due to its modular nature, database support can be easily

augmented or even replaced with custom-tailored modules, to better

accommodate features used by the client’s application

• CLDSQL allows you to control its behaviors

• CLDSQL provides a wide-ranging set of parameters that can be

used to control its behavior during both the generation and the

runtime phase

• Its unique combination of detection / transformation rules allows

you to modify the generated code

• There are also options to control the COBOL syntax that is used,

or how the runtime libraries are called

• Defaults implemented by CLDSQL can be simply used,

if they suit your requirements

• The CLDSQL transformation engine reduces the need to

change the code

• CLDSQL is equipped with a powerful analysis and transformation

system based on a collection of rules that can be used as is,

modified according to new needs,

or with new rules that can be created by the user

• Quality and security

• CLDSQL supports SSL/TLS connections to PostgreSQL

or other DBMSs of choice, using the DBMS-provided mechanisms

(including authentication and authorization)

for maximum security and reliability.

 Every release of CLDSQL passes a thorough testing phase

that checks for problems and vulnerabilities

231 rue Saint Honoré - 75001 Paris - France

Follow us

Features Benefits

• Integration

• CLDSQL can use information generated by the CobolCloud compiler

and profiler to analyze the code and generate the best possible

data access strategy for each scenario.

• Extensible logging system

• CLDSQL uses an advanced logging system that can be tailored

and extended to support multiple logging targets and filters. When

needed, whether for debugging purposes, or simply to “keep tabs”

on the application, custom logging modules can be written and

added to the CLDSQL runtime logging system

• Cross-platform • CLDSQL is natively available on Windows and Linux platforms

• Make the COBOL applications shine in the Cloud

• Thanks to its extensible and pluggable architecture,

CLDSQL enables applications to easily connect with databases

residing in a shared or private cloud environment.

Ideal for containerized applications, CLDSQL supports the major

databases on standard cloud architectures

